Problem 1.32

Check the fundamental theorem for gradients, using $T=x^{2}+4 x y+2 y z^{3}$, the points $\mathbf{a}=(0,0,0)$, $\mathbf{b}=(1,1,1)$, and the three paths in Fig. 1.28:
(a) $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$;
(b) $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$;
(c) the parabolic path $z=x^{2}, y=x$.

Fig. 1.28

Solution

The aim here is to verify the fundamental theorem for line integrals, which states that

$$
\int_{\mathbf{a}}^{\mathbf{b}} \nabla T \cdot d \mathbf{l}=T(\mathbf{b})-T(\mathbf{a})
$$

for the three paths shown above. In each case the right side is

$$
\begin{aligned}
T(1,1,1)-T(0,0,0) & =\left[(1)^{2}+4(1)(1)+2(1)(1)^{3}\right]-\left[(0)^{2}+4(0)(0)+2(0)(0)^{3}\right] \\
& =7 .
\end{aligned}
$$

Part (a)

Evaluate the left side for the specific path: $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$.

$$
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l}=\int_{\langle 0,0,0\rangle}^{\langle 1,0,0\rangle} \nabla T \cdot d \mathbf{l}+\int_{\langle 1,0,0\rangle}^{\langle 1,1,0\rangle} \nabla T \cdot d \mathbf{l}+\int_{\langle 1,1,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l}
$$

Along the first line segment, the variation is solely over x while $y=0$ and $z=0$; along the second line segment, the variation is solely over y while $x=1$ and $z=0$; and along the third line segment, the variation is solely over z while $x=1$ and $y=1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l} & =\left.\int_{0}^{1}(\nabla T)_{x}\right|_{\substack{y=0 \\
z=0}} d x+\left.\int_{0}^{1}(\nabla T)_{y}\right|_{\substack{x=1 \\
z=0}} d y+\left.\int_{0}^{1}(\nabla T)_{z}\right|_{\substack{x=1 \\
y=1}} d z \\
& =\left.\int_{0}^{1} \frac{\partial T}{\partial x}\right|_{\substack{y=0 \\
z=0}} d x+\left.\int_{0}^{1} \frac{\partial T}{\partial y}\right|_{\substack{x=1 \\
z=0}} d y+\left.\int_{0}^{1} \frac{\partial T}{\partial z}\right|_{\substack{x=1 \\
y=1}} d z
\end{aligned}
$$

Compute the integrals.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l} & =\left.\int_{0}^{1}(2 x+4 y)\right|_{\substack{y=0 \\
z=0}} d x+\left.\int_{0}^{1}\left(4 x+2 z^{3}\right)\right|_{\substack{x=1 \\
z=0}} d y+\left.\int_{0}^{1}\left(6 y z^{2}\right)\right|_{\substack{x=1 \\
y=1}} d z \\
& =\int_{0}^{1} 2 x d x+\int_{0}^{1} 4(1) d y+\int_{0}^{1} 6(1) z^{2} d z \\
& =1+4+2 \\
& =7
\end{aligned}
$$

The fundamental theorem is verified.

Part (b)

Evaluate the left side for the specific path: $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$.

$$
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l}=\int_{\langle 0,0,0\rangle}^{\langle 0,0,1\rangle} \nabla T \cdot d \mathbf{l}+\int_{\langle 0,0,1\rangle}^{\langle 0,1,1\rangle} \nabla T \cdot d \mathbf{l}+\int_{\langle 0,1,1\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l}
$$

Along the first line segment, the variation is solely over z while $x=0$ and $y=0$; along the second line segment, the variation is solely over y while $x=0$ and $z=1$; and along the third line segment, the variation is solely over x while $y=1$ and $z=1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l} & =\left.\int_{0}^{1}(\nabla T)_{z}\right|_{\substack{x=0 \\
y=0}} d z+\left.\int_{0}^{1}(\nabla T)_{y}\right|_{\substack{x=0 \\
z=1}} d y+\left.\int_{0}^{1}(\nabla T)_{x}\right|_{\substack{y=1 \\
z=1}} d x \\
& =\left.\int_{0}^{1} \frac{\partial T}{\partial z}\right|_{\substack{x=0 \\
y=0}} d z+\left.\int_{0}^{1} \frac{\partial T}{\partial y}\right|_{\substack{x=0 \\
z=1}} d y+\left.\int_{0}^{1} \frac{\partial T}{\partial x}\right|_{\substack{y=1 \\
z=1}} d x \\
& =\left.\int_{0}^{1}\left(6 y z^{2}\right)\right|_{\substack{x=0 \\
y=0}} d z+\left.\int_{0}^{1}\left(4 x+2 z^{3}\right)\right|_{\substack{x=0 \\
z=1}} d y+\left.\int_{0}^{1}(2 x+4 y)\right|_{\substack{y=1 \\
z=1}} d x \\
& =\int_{0}^{1} 6(0) z^{2} d z+\int_{0}^{1}\left[4(0)+2(1)^{3}\right] d y+\int_{0}^{1}[2 x+4(1)] d x \\
& =0+2+5 \\
& =7
\end{aligned}
$$

The fundamental theorem is verified.

Part (c)

Evaluate the left side for the line integral over the parabolic path parameterized by $\mathbf{l}(t)=\left\langle t, t, t^{2}\right\rangle$, where $0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{\langle 0,0,0\rangle}^{\langle 1,1,1\rangle} \nabla T \cdot d \mathbf{l} & =\int_{0}^{1} \nabla T(\mathbf{l}(t)) \cdot \mathbf{l}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle 2(t)+4(t), 4(t)+2\left(t^{2}\right)^{3}, 6(t)\left(t^{2}\right)^{2}\right\rangle \cdot\langle 1,1,2 t\rangle d t \\
& =\int_{0}^{1}\left\langle 6 t, 4 t+2 t^{6}, 6 t^{5}\right\rangle \cdot\langle 1,1,2 t\rangle d t \\
& =\int_{0}^{1}\left[(6 t)(1)+\left(4 t+2 t^{6}\right)(1)+\left(6 t^{5}\right)(2 t)\right] d t \\
& =\int_{0}^{1}\left(10 t+14 t^{6}\right) d t \\
& =10\left(\frac{1}{2}\right)+14\left(\frac{1}{7}\right) \\
& =5+2 \\
& =7
\end{aligned}
$$

The fundamental theorem is verified.

